🎉 ScaleOps is excited to announce $58M in Series B funding led by Lightspeed! Bringing our total funding to $80M! 🎉 Read more →

DevOps Kubernetes

Top Resource Management Issues in Kubernetes

Kubernetes (K8s) is a powerful tool for container orchestration, but effective resource management can be a challenge. Poor resource management can lead to performance bottlenecks, application failures, and increased costs.

Guy Baron 17 June 2024 4 min read

Introduction

Kubernetes (K8s) is a powerful tool for container orchestration, but effective resource management can be a challenge. Poor resource management can lead to performance bottlenecks, application failures, and increased costs. In this post, we will explore four common resource management issues in Kubernetes: noisy neighbors, CPU throttling and limits, Out of Memory (OOM) issues with limits, and OOM issues on loaded nodes. We’ll provide clear explanations and practical examples to help you manage these issues effectively.

1. Noisy Neighbors: The Silent Performance Killer

How to Mitigate Noisy Neighbors

  • Resource Requests and Limits: Set resource requests to ensure a minimum amount of resources for each pod and limits to cap the maximum resources a pod can use.
  • Node Affinity and Taints/Tolerations: Use these Kubernetes features to control pod placement and isolate high-resource pods from others.

2. CPU Throttling and Limits: Striking the Right Balance

What Is CPU Throttling?

CPU throttling occurs when a pod exceeds its allocated CPU limit, causing Kubernetes to restrict its CPU usage. This can lead to performance degradation and latency issues.

Example

Consider an application that processes real-time data. If the CPU limit is set too low, the application might not process data quickly enough, resulting in delays and potentially lost data.

How to Avoid CPU Throttling

  • Set Appropriate Limits: Understand your application’s CPU requirements and set limits that allow for peak usage.
  • Use a Vertical Pod Autoscaler: a Vertical Pod Autoscaler can automatically adjust the CPU and memory requests/limits of your pods based on actual usage. You can use the community VPA or a full-blown autoscaling platform like ScaleOps
Avoid CPU Throttling

3. OOMs and Limits: Preventing Memory Shortages

What Are OOMs?

Out of Memory (OOM) issues occur when a pod tries to use more memory than is available, causing the kernel to terminate the process. This can lead to application crashes and data loss.

Example

A Java application with a high memory footprint might crash if its memory limit is set too low, leading to an OOM error.

How to Prevent OOMs

  • Set Memory Requests and Limits: Ensure pods have enough memory to operate without exceeding node capacity.
  • Monitor Memory Usage: Use tools like Prometheus and Grafana to monitor memory usage and adjust limits as necessary.
How to Prevent OOMs

4. OOMs and Loaded Nodes: Balancing Resource Allocation

What Happens on Loaded Nodes?

When a node is heavily loaded, even pods with adequate memory limits might face OOM issues if the total memory usage exceeds the node’s capacity. This is particularly problematic in environments with dynamic workloads.

Example

Consider a cluster running multiple applications with varying memory usage patterns. If several applications peak in memory usage simultaneously, the node might run out of memory, causing OOM errors across multiple pods.

How to Manage Loaded Nodes

  • Rightsize Resource Requests: Ensure that resource requests accurately reflect the memory needs of your pods, helping to prevent nodes from being overloaded.
  • Constantly Monitor Node Capacity and Utilization
Manage Loaded Nodes

Conclusion

Effective resource management is crucial for maintaining the performance and reliability of your Kubernetes applications. Using ScaleOps you can ensure that your applications run smoothly and efficiently by understanding and addressing issues like noisy neighbors, CPU throttling, OOM errors, and loaded nodes. Automating resource requests and limits will help you manage resources effectively and prevent common pitfalls.

Ready to take your Kubernetes cluster to the next level? Visit ScaleOps to discover advanced solutions for optimizing your cloud infrastructure.

Related Articles

Kubernetes Cost Management: Best Practices & Top Tools

Kubernetes Cost Management: Best Practices & Top Tools

Managing Kubernetes costs can be challenging, especially with containers running across multiple clusters and usage constantly fluctuating. Without a clear strategy, unexpected expenses can quickly add up. This article explores the key principles of Kubernetes cost management, highlighting major cost factors, challenges, best practices, and tools to help you maintain efficiency and stay within budget.

Amazon EKS Auto Mode: What It Is and How to Optimize Kubernetes Clusters

Amazon EKS Auto Mode: What It Is and How to Optimize Kubernetes Clusters

Amazon recently introduced EKS Auto Mode, a feature designed to simplify Kubernetes cluster management. This new feature automates many operational tasks, such as managing cluster infrastructure, provisioning nodes, and optimizing costs. It offers a streamlined experience for developers, allowing them to focus on deploying and running applications without the complexities of cluster management.

Pod Disruption Budget: Benefits, Example & Best Practices

Pod Disruption Budget: Benefits, Example & Best Practices

In Kubernetes, the availability during planned and unplanned disruptions is a critical necessity for systems that require high uptime. Pod Disruption Budgets (PDBs) allow for the management of pod availability during disruptions. With PDBs, one can limit how many pods of an application could be disrupted within a window of time, hence keeping vital services running during node upgrades, scaling, or failure. In this article, we discuss the main components of PDBs, their creation, use, and benefits, along with the best practices for improving them for high availability at the very end.

Schedule your demo